
Entering real numbers
Real numbers may contain a decimal point or the letter “e” to signify an “exponent of 10”. Use
control-minus to enter a negative sign.

Examples: 1, 1.2, 1.2e12, -1.2e-12.

Real numbers are displayed using the currect display mode: std, fix, or sci.

Note: Previous versions of RPN Calculator used shift-minus (underscore) for a negative sign.
This has changed to allow units to be entered.

Entering integers
Integers start with a "#". Integers may end with an ‘b’, 'o', 'd', or 'h', for binary, octal, decimal, or
hexadecimal, respectively. If the type specifier is left off the current integer display mode is
assumed.

Examples: #10o, #12d, #F0h, #F0.

Integers are displayed using the currect base mode: bin, oct, dec, or hex.

Only the number of bits specified by the integer word size are relevant. Use stws to store the
integer word size and rcws to recall the integer word size.

Entering variables
Variables start and end with a single quote (').

Examples: ‘a’, ‘b'.

Entering vectors
Vectors start with an opening brace ([) and end with a closing brace (]). Each element must be
a real number separated by spaces.

Example: [1 2 3]

Each element of a vector is displayed using the currect display mode: std, fix, or sci.

Entering matrices
Matrices start with an opening brace ([) and end with a closing brace (]). Each row must also
start with an opening brace and end with a closing brace. Each element must be a real number
with columns separated by spaces.

Example: [[1 2][3 4]]

Each element of a matrix is displayed using the currect display mode: std, fix, or sci.

Entering lists
Lists start with an opening curly bracket ({) and end with a closing curly bracket (}). Elements
can be of any type including lists. Elements are separated by spaces.

Examples: {1 2}, {#1 {‘a’ 3}}

Entering programs
Programs start with two opening angle brackets (<<) and end with two closing angle brackets
(>>). Elements of a program can be of any type including other programs. Elements are
separated by spaces.

Examples: << 2 * >>, << << 2 * >> << 3 * >> ifte >>

You can store a program in a variable and execute it by typing the name of the variable without
the single quotes.

You can use the following programming structures in programs:

-> Create local variables and use them in the following program

Usage: obj1 obj2 … objn -> v1 v2 … vn << … >>

do-until-end Indefinite loop that gets executed at least once

Usage: do commands until condition end
for-next Definite loop incremented by one

Usage: begin end for index commands next
for-step Definite loop with a specified increment

Usage: begin end for index commands increment step
if-then-[else]-end Conditional structure

Usage: if condition then true-commands end
if condition then true-commands else false-commands end

iferr-then-[else]-end Error trapping conditional structure

Usage: iferr commands then error-commands end
iferr commands then error-commands else no-error-commands

end
start-next Definite loop that gets executed at least once and is incremented by one

Usage: begin end start index commands next
start-step Definite loop with a specified increment that gets executed at least once

Usage: begin end start index commands increment step
while-repeat-end Indefinite loop

Usage: while condition repeat commands end
Note: Do not use i (square-root of negative one) or any other built-in command for local
variables or loop indices.

Entering units
Numbers defined with specific units starts with a real number, have an underscore (_) in the
middle, and end with a combination of base units, times (*), divide (/) , power (^), and real
numbers.

Examples: 1_m, -2.2E-3_kg*m^2/s^2.

Numbers with units are displayed using the current display mode: std, fix, or sci.

Note: Units are defined in an editable text file, units.txt.

Entering complex numbers
Complex numbers start with are enclosed in parentheses () and contain two real numbers, the
real part and the imaginary part, separated by a comma (,).

Examples: (0,1), (1.2, 3.4).

Complex numbers are displayed using the current display mode: std, fix, or sci.

Complex numbers are displayed as length an angle in plr mode or as real part and imaginary
part in rct mode.

When in polar (plr) coordinate mode, the complex angle is displayed using the current angle
mode: rad, deg, or grad.

+ Add
The + function returns the sum of two objects, as follows:

a b -> c

a #b -> #c

#a b -> #c

#a #b -> #c

[a] [b] -> [c]

[[a]] [[b]] -> [[c]]

{a} {b} -> {a b}

{a} obj -> {a obj}

obj {a} -> {obj a}

a_u1 b_u2 -> c_u2

a (b) -> (c)

(a) b -> (c)

(a) (b) -> (c)

- Subtract
The - function returns the difference of two objects, as follows:

a b -> c

a #b -> #c

#a b -> #c

#a #b -> #c

[a] [b] -> [c]

[[a]] [[b]] -> [[c]]

a_u1 b_u2 -> c_u2

a (b) -> (c)

(a) b -> (c)

(a) (b) -> (c)

* Multiply
The * function returns the product of two objects, as follows:

a b -> c

a #b -> #c

#a b -> #c

#a #b -> #c

a [b] -> [c]

[a] b -> [c]

[[a]] [b] -> [c]

a [[b]] -> [[c]]

[[a]] b -> [[c]]

[[a]] [[b]] -> [[c]]

a_u1 b_u2 -> c_u3

a_u b -> c_u

a b_u -> c_u

a (b) -> (c)

(a) b -> (c)

(a) (b) -> (c)

/ Divide
The / function returns the quotient of two objects, as follows:

a b -> c

a #b -> #c

#a b -> #c

#a #b -> #c

[a] b -> [c]

[a] [[b]] -> [c]

[[a]] b -> [[c]]

[[a]] [[b]] -> [[c]]

a_u1 b_u2 -> c_u3

a_u b -> c_u

a b_u1 -> c_u2

a (b) -> (c)

(a) b -> (c)

(a) (b) -> (c)

^ Power
The ^ function returns the object in the second position raised to the power of the object in the
first position, as follows:

a b -> c

a_u1 b -> c_u2

a (b) -> (c)

(a) b -> (c)

(a) (b) -> (c)

! Factorial (Gamma)
The ! function returns the factorial of a real number if it is a positive integer. Otherwise, the !
function returns the gamma function of the number plus one, as follows:

a -> b

== Equal Comparison
The == function tests if the object in the second position is equal to the object in the first
position, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

< Less Than Comparison
The < function tests if the object in the second position is less than the object in the first
position, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

<= Less Than or Equal to Comparison
The <= function tests if the object in the second position is less than or equal to the object in the
first position, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

<> Not Equal Comparison
The <> function tests if the object in the second position is not equal to the object in the first
position, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

> Greater Than Comparison
The > function tests if the object in the second position is greater than the object in the first
position, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

>= Greater Than or Equal to Comparison
The >= function tests if the object in the second position is greater than or equal to the object in
the first position, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

% Percent
The % function returns the product of two objects divided by 100, as follows:

a b -> c

a_u b -> c_u

a b_u -> c_u

abs Absolute Value
The abs function returns the absolute value of an object, as follows:

a -> b

[a] -> b

[[a]] -> b

a_u -> b_u

(a) -> b

acos Arc Cosine
The acos function returns the arc cosine of a real number, as follows:

a -> b

(a) -> (b)

The angle returned depends on the currect angle mode: rad, deg, or grad.

acosh Arc Hyperbolic Cosine
The acosh function returns the arc hyperbolic cosine of a real number, as follows:

a -> b

(a) -> (b)

alog Base 10 Antilogarithm
The alog function returns the base 10 antilogarithm of a real number, as follows:

a -> b

(a) -> (b)

and Logical or Bitwise AND
The and function returns the logical AND of two real numbers or the bitwise AND of two
integers, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

arg Complex Angle (Argument)
The arg function returns the polar angle of a complex number, as follows:

(a) -> b

->arry Create Matrix or Vector
The ->arry function creates a matrix or vector, as follows:

n1…na a -> [b]

n1…nab {a b} -> [[c]]

asin Arc Sine
The asin function returns the arc sine of a real number, as follows:

a -> b

(a) -> (b)

The angle returned depends on the currect angle mode: rad, deg, or grad.

asinh Arc Hyperbolic Sine
The asinh function returns the arc hyperbolic sine of a real number, as follows:

a -> b

(a) -> (b)

atan Arc Tangent
The atan function returns the arc tangent of a real number, as follows:

a -> b

(a) -> (b)

The angle returned depends on the currect angle mode: rad, deg, or grad.

atanh Arc Hypberbolic Tangent
The atanh function returns the arc hyperbolic tangent of a real number, as follows:

a -> b

(a) -> (b)

beep Play a Note
The beep function plays a note, as follows:

frq dur ->

The frequency is in Hertz. The duration is in seconds.

Note: beep does not work correctly under Win32s.

bin Set Binary Mode
The bin function sets the integer base mode to binary, as follows:

->

All integers on the stack will be displayed in binary mode. For example, the integer 16 will be
displayed as #10000b.

b->r Binary to Real Conversion
The b->r function converts an integer to a real number, as follows:

#a -> b

calcfv Calculate Future Value
The calcfv function calculates the future value of money, as follows:

-> a

The number of payments per year (stopyr) must be set before any time value of money
calculations can be done. The default is monthly payments. Four out of five of the following
must be set before calculating the fifth value: future value (stofv), annual interest rate (stoi
%yr), number of payments (ston), payment value (stopmt), and present value (stopv).

calci%yr Calculate Annual Interest Rate
The calci%yr function calculates the anual interest rate, as follows:

-> a

This calculation is done using an iterative approach. The other values used in the calculation
must be reasonable in order to get a reasonable result.

The number of payments per year (stopyr) must be set before any time value of money
calculations can be done. The default is monthly payments. Four out of five of the following
must be set before calculating the fifth value: future value (stofv), annual interest rate (stoi
%yr), number of payments (ston), payment value (stopmt), and present value (stopv).

calcn Calculate Number of Payments
The calcn function calculates the number of payments, as follows:

-> a

The number of payments per year (stopyr) must be set before any time value of money
calculations can be done. The default is monthly payments. Four out of five of the following
must be set before calculating the fifth value: future value (stofv), annual interest rate (stoi
%yr), number of payments (ston), payment value (stopmt), and present value (stopv).

calcpmt Calculate Payment
The calcpmt function calculates the payment, as follows:

-> a

The number of payments per year (stopyr) must be set before any time value of money
calculations can be done. The default is monthly payments. Four out of five of the following
must be set before calculating the fifth value: future value (stofv), annual interest rate (stoi
%yr), number of payments (ston), payment value (stopmt), and present value (stopv).

calcpv Calculate Present Value
The calcpv function calculates the present value of money, as follows:

-> a

The number of payments per year (stopyr) must be set before any time value of money
calculations can be done. The default is monthly payments. Four out of five of the following
must be set before calculating the fifth value: future value (stofv), annual interest rate (stoi
%yr), number of payments (ston), payment value (stopmt), and present value (stopv).

ceil Ceiling
The ceil function returns the next greater integer, as follows:

a -> b

a_u -> b_u

%ch Percent Change
The %ch function returns the percent change of the object in the first position compared to the
object in the second position, as follows:

a b -> c

a_u1 b_u2 -> c

clear Clear the Stack
The clear function clears the entire stack, as follows:

obj1 … objn ->

clsum Clear Statistics Matrix
The clsum function clears the statistics matrix, as follows:

->

clvar Clear all Variables
The clvar function clears all of the stored variables, as follows:

->

cnrm Column Norm
The cnrm function returns the column norm of a matrix or vector, as follows:

[a] -> b

[[a]] -> b

comb Combinations
The comb function returns the number of combinations, as follows:

n r -> c

con Create Constant Matrix or Vector
The con function returns a matrix or vector with all elements equal, as follows:

[a] b -> [b]

{a} b -> [c]

[[a]] b -> [[b]]

{a b} c -> [[d]]

conj Complex Conjugate
The conj function returns conjugate of a complex number, as follows:

(a) -> (b)

convert Convert Units
The convert function converts the object in the second position to the units of the object in the
first position, as follows:

a_u1 b_u2 -> c_u2

corr Correlation Coefficient
The corr function returns the correlation coefficient of X and Y in the statistics matrix, as follows:

-> a

cos Cosine
The cos function returns the cosine an object, as follows:

a -> b

a_u -> b

(a) -> (b)

If an angle unit is not specified, the units of the input angle depends on the currect angle mode:
rad, deg, or grad.

cosh Hyperbolic Cosine
The cosh function returns the hyperbolic cosine of a real number, as follows:

a -> b

(a) -> (b)

cov Covariance
The cov function returns the covariance of X and Y in the statistics matrix, as follows:

-> a

c->r Complex to Real Conversion
The c->r function returns the real part and the imaginary part of a complex number, as follows:

(a) -> r i

cross Cross Product
The cross function returns the cross product of two three-element vectors, as follows:

[a] [b] -> [c]

dot Dot Product
The dot function returns the dot product of two vectors, as follows:

[a] [b] -> c

d->r Degrees to Radians Conversion
The d->r function converts a real number from degrees to radians, as follows:

a -> b

dec Set Decimal Mode
The dec function sets the integer base mode to decimal, as follows:

->

All integers on the stack will be displayed in decimal mode. For example, the integer 16 will be
displayed as #16d.

deg Set Degrees Mode
The deg function sets the angle mode to degrees, as follows:

->

Trigonometric functions will use degree units, by default. The inverse trigonometric functions
will return angles in degrees. There are 360 degrees in a full circle.

det Determinant of a Matrix
The det function returns the determinant of a matrix, as follows:

[[a]] -> b

depth Depth of the Stack
The depth function returns the depth of the stack, as follows:

-> a

drop Drop an Object
The drop function drops an object from the stack, as follows:

obj ->

drop2 Drop two Objects
The drop2 function drops two objects from the stack, as follows:

obj1 obj2 ->

dropn Drop n Objects
The dropn function drops n objects from the stack, as follows:

obj1…objn n ->

dup Duplicate an Object
The dup function duplicates an object on the stack, as follows:

obj -> obj obj

dup2 Duplicate two Objects
The dup2 function duplicates two objects on the stack, as follows:

obj1 obj2 -> obj1 obj2 obj1 obj2

dupn Duplicate n Objects
The dupn function duplicates n objects on the stack, as follows:

obj1…objn n -> obj1…objn obj1…objn

e Constant e
The e function returns 2.71828182845905, as follows:

-> e

eng Set Engineering Mode
The eng function sets the real number display mode to engineering notation with the given
number of fixed digits, as follows:

n ->

All real numbers on the stack will be displayed in engineering mode. For example, the real
number 12.345 will be displayed as 12.3E0 when fixed to 2 decimal places.

eval Evaluate an Object
The eval function evaluates a program or variable, as follows:

obj -> depends

exp Natural Antilogarithm
The exp function returns the natural antilogarithm of a real number, as follows:

a -> b

(a) -> (b)

fix Set Fixed Mode
The fix function sets the real number display mode to fixed notation with the given number of
fixed digits, as follows:

n ->

All real numbers on the stack will be displayed in fixed mode. For example, the real number
12.345 will be displayed as 12.34 when fixed to 2 decimal places. If the number is too big or
too small to display in fixed mode, scientific mode is used instead.

floor Floor
The floor function returns the next smaller integer, as follows:

a -> b

a_u -> b_u

fp Fractional Part
The fp function returns the fractional part of an object, as follows:

a -> b

a_u -> b_u

get Get an Element
The get function gets an element of a vector, matrix, or list, as follows:

[a] b -> c

[[a]] {b c} -> d

{a} b -> obj

grad Set Grads Mode
The grad function sets the angle mode to grads, as follows:

->

Trigonometric functions will use grad units, by default. The inverse trigonometric functions will
return angles in grads. There are 400 grads in a full circle.

hex Set Hexadecimal Mode
The hex function sets the integer base mode to hexadecimal, as follows:

->

All integers on the stack will be displayed in hexadecimal mode. For example, the integer 16
will be displayed as #10h.

i Comlex Constant i
The i function return the constant i, as follows:

-> (i)

idn Identity Matrix
The idn function creates an n x n identity matrix, as follows:

n -> [[a]]

ift If-Then
The ift function evaluates the object in the first position if the condition in the second position is
TRUE, as follows:

b objT -> depends

Any non-zero real number is TRUE. Zero is FALSE.

ifte If-Then-Else
The ifte function evaluates the object in the second position if the condition in the third position
is TRUE and evaluates the object in the first position otherwise, as follows:

b objT objF -> depends

Any non-zero real number is TRUE. Zero is FALSE.

im Imaginary Part
The im function returns the imaginary part of a complex number, as follows:

(a) -> b

inv Inverse
The inv function returns the inverse of an object, as follows:

a -> b

[[a]] -> [[b]]

a_u1 -> b_u2

(a) -> (b)

ip Integer Part
The ip function returns the integer part of an object, as follows:

a -> b

a_u -> b_u

->list Create List
The ->list function creates a list of n objects, as follows:

obj1…objn n -> {obj1…objn}

ln Natural Logarithm
The ln function returns the natural logarithm of a real number, as follows:

a -> b

(a) -> (b)

log Base 10 Logarithm
The log function returns the base 10 logarithm of a real number, as follows:

a -> b

(a) -> (b)

lr Linear Regression
The lr function returns the intercept and slope using linear regression on the statistics matrix, as
follows:

-> b m

mant Mantissa
The mant function returns the mantissa of a real number, as follows:

a -> b

max Maximum
The max function returns the higher value object, as follows:

a b -> c

a_u1 b_u2 -> c_u3

maxr Maximum Real
The maxr function returns 1.79769313486232E+308, as follows:

-> a

maxsum Maximum Values
The maxsum function returns the maximum values in each column of the statistics matrix, as
follows:

-> [a]

mean Mean
The mean function returns the mean values of each column of the statistics matrix, as follows:

-> [a]

min Minimum
The min function returns the lower value object, as follows:

a b -> c

a_u1 b_u2 -> c_u3

minr Minimum Real
The minr function returns 2.2250738585072E-308, as follows:

-> a

minsum Minimum Values
The minsum function returns the minimum values in each column of the statistics matrix, as
follows:

-> [a]

mod Modulo
The mod function returns the modulo of two real numbers, as follows:

a b -> c

neg Negate
The neg function negates an object, as follows:

a -> b

#a -> #b

[a] -> [b]

[[a]] -> [[b]]

a_u -> b_u

(a) -> (b)

not Logical or Bitwise NOT
The not function returns the logical NOT of a real number or the bitwise NOT of an integer, as
follows:

a -> b

#a -> #b

A true result is represented by the real number one. A false result is represented by the real
number zero.

nsum Number of Rows
The nsum function returns the number of data points in the statistics matrix, as follows:

-> a

obj-> Object Components
The obj-> function breaks an object into its components, as follows:

obj -> depends

oct Set Octal Mode
The oct function sets the integer base mode to octal, as follows:

->

All integers on the stack will be displayed in octal mode. For example, the integer 16 will be
displayed as #20o.

off Exit RPN Calculator
The off function turns RPN Calculator off, as follows:

->

or Logical or Bitwise OR
The or function returns the logical OR of two real numbers or the bitwise OR of two integers, as
follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

over Duplicate Level 2 Object
The over function duplicates the object in the second position, as follows:

obj1 obj2 -> obj1 obj2 obj1

perm Permutations
The perm function returns the number of permutations, as follows:

n r -> c

pi Constant
The pi function returns 3.141592653589793, as follows:

->

pick Duplicate Level n+1 Object
The pick function duplicates the object in position n+1, as follows:

obj1…objn n -> obj1…objn obj1

plr Set Polar Mode
The plr function sets the coordinate mode to polar, as follows:

->

predx Predicted X Value
The predx function returns the predicted X value using the curve calculated by the lr function,
as follows:

y -> x

predy Predicted Y Value
The predy function returns the predicted Y value using the curve calculated by the lr function,
as follows:

x -> y

purge Purge Variable
The purge function deletes a variable, as follows:

‘a’ ->

put Put an Element
The put function puts an element into a vector, matrix, or list, as follows:

[a] b c -> [d]

[[a]] {b c} d -> [[e]]

{a} b obj -> {c}

rad Set Radians Mode
The rad function sets the angle mode to radians, as follows:

->

Trigonometric functions will use radian units, by default. The inverse trigonometric functions
will return angles in radians. There are 2 radians in a full circle.

rand Random Number
The rand function generates a pseudo-random number, as follows:

-> a

The rdz function should be called once before using rand.

r->b Real to Binary Conversion
The r->b function converts a real number to an integer, as follows:

a -> #b

r->c Real to Complex Conversion
The r->c function converts real part and the imaginary part of a complex number to a comlex
number, as follows:

r i -> (a)

rcl Recall Variable
The rcl function recalls a variable, as follows:

‘a’ -> obj

rclfv Recall Future Value
The rclfv function recalls the future value of money, as follows:

-> a

rcli%yr Recall Annual Interest Rate
The rcli%yr function recalls the annual interest rate, as follows:

-> a

rcln Recall Number of Payments
The rcln function recalls the number of payments, as follows:

-> a

rclpmt Recall Payment
The rclpmt function recalls the payment, as follows:

-> a

rclpv Recall Present Value
The rclpv function recalls the present value, as follows:

-> a

rclpyr Recall Number of Payments per Year
The rclpyr function recalls the number of payments per year, as follows:

-> a

rclsum Recall Statistics Matrix
The rclsum function recalls the statistics matrix, as follows:

-> [[a]]

The matrix is not recalled if it contains more than 16 rows.

rct Set Rectangular Mode
The rct function sets the coordinate mode to rectangular, as follows:

->

rcws Recall Integer Word Size
The rcws function recalls the integer word size, as follows:

-> n

r->d Radians to Degrees Conversion
The r->d function converts a real number from radian to degrees, as follows:

a -> b

rdz Randomize
The rdz function sets the seed for generating pseudo-random numbers, as follows:

a ->

If zero is specified for the seed, the seed is based on the current time.

To generate pseudo-random numbers, use the rand function.

re Real Part
The re function returns the real part of a complex number, as follows:

(a) -> b

rl Rotate Left one Bit
The rl function rotates the bits of an integer one bit to the left, as follows:

#a -> #b

rlb Rotate Left one Byte
The rlb function rotates the bits of an integer one byte to the left, as follows:

#a -> #b

rnd Round
The rnd function rounds the real part of an object off to the given number of decimal places, as
follows:

a -> b

[a] -> [b]

[[a]] -> [[b]]

a_u -> b_u

(a) -> (b)

rnrm Row Norm
The rnrm function returns the row norm of a matrix or vector, as follows:

[a] -> b

[[a]] -> b

roll Roll Up n Objects
The roll function rolls n objects up, as follows:

obj1…objn n -> obj2…objn obj1

rolld Roll Down n Objects
The rolld function rolls n objects down, as follows:

obj1…objn n -> objn obj1...objn-1

rot Rotate three Objects
The rot function rotates three objects, as follows:

obj1 obj2 obj3 -> obj2 obj3 obj1

rr Rotate Right one Bit
The rr function rotates the bits of an integer one bit to the right, as follows:

#a -> #b

rrb Rotate Right one Byte
The rrb function rotates the bits of an integer one byte to the right, as follows:

#a -> #b

rsd Residual Matrix or Vector
The rsd function returns the correction to the solution of a system of equations, as follows:

[b] [[a]] [z] -> [c]

[[b]] [[a]] [[z]] -> [[c]]

sci Set Scientific Mode
The sci function sets the real number display mode to scientific notation with the given number
of fixed digits, as follows:

n ->

All real numbers on the stack will be displayed in scientific mode. For example, the real
number 12.345 will be displayed as 1.23E1 when fixed to 2 decimal places.

sdev Standard Deviation
The sdev function returns the standard deviation of each column of the statistics matrix, as
follows:

-> [a]

sign Sign
The sign function returns the sign of an object, as follows:

a -> b

a_u -> b_u

(a) -> (b)

sin Sine
The sin function returns the sine of an object, as follows:

a -> b

a_u -> b

(a) -> (b)

If an angle unit is not specified, the units of the input angle depends on the currect angle mode:
rad, deg, or grad.

sinh Hyperbolic Sine
The sinh function returns the hyperbolic sine of a real number, as follows:

a -> b

(a) -> (b)

size Dimensions of an Object
The size function returns the dimensions of an object, as follows:

[a] -> {n}

[[a]] -> {n m}

{a} -> n

obj -> 1

sl Shift Left one Bit
The sl function shifts the bits of an integer one bit to the left, as follows:

#a -> #b

slb Shift Left one Byte
The slb function shifts the bits of an integer one byte to the left, as follows:

#a -> #b

sq Square
The sq function returns the square of an object, as follows:

a -> b

a_u1 -> b_u2

(a) -> (b)

sqrt Square Root
The sqrt function returns the square root of an object, as follows:

a -> b

a -> (b)

a_u1 -> b_u2

sr Shift Right one Bit
The sr function shifts the bits of an integer one bit to the right, as follows:

#a -> #b

srb Shift Right one Byte
The srb function shifts the bits of an integer one byte to the right, as follows:

#a -> #b

std Set Standard Mode
The std function sets the real number display mode to standard notation, as follows:

->

All real numbers on the stack will be displayed in standard mode. For example, the real
number 12.345 will be displayed as 12.345. If the number is too big or too small to display in
standard mode, scientific mode is used instead.

sto Store Object in a Variable
The sto function stores an object in a variable, as follows:

obj ‘a’ ->

stofv Store Future Value
The stofv function stores the future value of money, as follows:

a ->

stoi%yr Store Annual Interest Rate
The stoi%yr function stores the annual interest rate, as follows:

a ->

ston Store Number of Payments
The ston function stores the number of payments, as follows:

a ->

stopmt Store Payment
The stopmt function stores the payment, as follows:

a ->

stopv Store Present Value
The stopv function stores the present value, as follows:

a ->

stopyr Store Number of Payments per Year
The stopyr function stores the number of payments per year, as follows:

a ->

stosum Store Statistics Matrix
The stosum function stores a matrix in the statistics matrix, as follows:

[[a]] ->

stws Store Integer Word Size
The stws function stores the integer word size, as follows:

n ->

sum+ Add Row to Statistics Matrix
The sum+ function adds a row or rows to the statistics matrix, as follows:

a ->

[a] ->

[[a]] ->

sum- Remove Row from Statistics Matrix
The sum- function removes a row from the statistics matrix, as follows:

-> [a]

sumpar Statistics Matrix Parameters
The sumpar function returns the statistics matrix parameters, as follows:

-> {a}

The list contains five elements: selected X column (xcol), selected Y column (ycol), intercept,
slope (lr), and curve-fitting model (linfit, expfit, logfit, pwrfit, bestfit). Currently, only the linear fit
(linfit) model is available.

sumx Sum of X
The sumx function returns the sum of the X column in the statistics matrix, as follows:

-> a

sumxx Sum of X^2
The sumxx function returns the sum of the X column squared in the statistics matrix, as follows:

-> a

sumxy Sum of X*Y
The sumxy function returns the sum of the X column times the Y column in the statistics matrix,
as follows:

-> a

sumy Sum of Y
The sumy function returns the sum of the Y column in the statistics matrix, as follows:

-> a

sumyy Sum of Y^2
The sumyy function returns the sum of the Y column squared in the statistics matrix, as follows:

-> a

swap Swap two Objects
The swap function swaps two objects, as follows:

obj1 obj2 -> obj2 obj1

%t Percent of Total
The %t function returns the percentage of the object in the first position compared to the object
in the second position, as follows:

a b -> c

a_u1 b_u2 -> c

tan Tangent
The tan function returns the tangent of an object, as follows:

a -> b

a_u -> b

(a) -> (b)

If an angle unit is not specified, the units of the input angle depends on the currect angle mode:
rad, deg, or grad.

tanh Hyperbolic Tangent
The tanh function returns the hyperbolic tangent of an object, as follows:

a -> b

(a) -> (b)

tot Totals
The tot function returns the totals of each column of the statistics matrix, as follows:

-> [a]

trn Transpose of a Matrix
The trn function returns transpose of a matrix, as follows:

[[a]] -> [[b]]

trnc Truncate
The trnc function truncates the real part of an object at the given number of decimal places, as
follows:

a -> b

[a] -> [b]

[[a]] -> [[b]]

a_u -> b_u

(a) -> (b)

type Type of an Object
The type function returns a real number specifying the type of the given object, as follows:

obj -> n

The return value for each object type is:

Real 0

Complex 1

Vector 3

Matrix 3

List 5

Variable 6

Program 8

Integer 10

Unit 13

ubase Convert to SI Base Units
The ubase function converts a unit object to SI base units, as follows:

a_u1 -> b_u2

->unit Create Unit
The ->unit function creates a unit object from the real number in the second position and the
units from the object in the first position, as follows:

a b_u -> a_u

uval Unit Value
The uval function returns the real part of a unit object, as follows:

a_u -> a

var Variance
The var function returns the variance of each column of the statistics matrix, as follows:

-> [a]

vars Get List of all Variables
The vars function returns a list of all the variables, as follows:

-> {a}

wait Wait
The wait function puts RPN Calculator to sleep for n seconds, as follows:

n ->

xcol Select X Column
The xcol function selects the independent column of the statistics matrix, as follows:

x ->

xor Logical or Bitwise Exclusive OR
The xor function returns the logical exclusive OR of two real numbers or the bitwise exclusive
OR of two integers, as follows:

a b -> c

#a #b -> #c

A true result is represented by the real number one. A false result is represented by the real
number zero.

xpon Exponent
The xpon function returns the exponent of a real number, as follows:

a -> b

xroot Xth Root
The xroot function returns the xth root of an object, as follows:

y x -> a

y_u1 x -> a_u2

ycol Select Y Column
The ycol function selects the dependent column of the statistics matrix, as follows:

x ->

About Box - Displays copyright and version information. Click OK to dismiss the dialog box.

New - Clears the stack, any RPN file and all stored information including custom programs and
defined variables.

To clear the stack only, use the clear function.

Open - Opens a saved RPN file.

Save - Updates the open RPN file with current values for the stack, defined variables and
programs.

If you are working with a new untitled file, clicking this command opens the Save As dialog
where you can identify a filename and path.

Save As - Opens the Save As dialog where you can save all current values including the stack,
defined variables and programs to an RPN file. You can create a new RPN file or select and
existing file to be replaced.

Recently used files - Lists your four most recently used RPN files.

Exit - Closes the calculator. RPN Calculator prompts you to save if you have made any changes
since the last save.

Edit menu

Undo - Restores the stack to a previous state. Currently, undo does not restore any modes or
variables. Up to 100 levels of undo are currently available.

Redo - Restores the stack to a state before undo was selected. Currently, redo does not
restore any modes or variables. Up to 100 levels of redo are currently available.

Cut - Cuts selected text from the entry field to the clipboard. This command does not work for
objects on the stack.

This command is available only if you have selected text.

Copy - Copies selected text to the clipboard. You can select an object from the stack or you can
select part or all of the information in the entry field.

This command is available only if you have selected text.

Paste - Pastes information from the clipboard to the current position on the entry field.

Edit - Places an object in the entry field for editing. If the object is the name of a global
variable, the contents of the variable are placed in the entry field for editing.

View menu

- keypad number keys are all aliased to hid_keypad1

- all keys that have an equivalent tool are aliased to that tool

Tool bar - Shows/hides the toolbar. The toolbar provides easy access to file and editing
functions and to help.

Status bar - Shows/hides the status bar.

The status bar displays a short description of all the tools on the tool menu.

The status bar also displays error messages when RPN Calculator cannot carry out a function
you have entered.

Key pad - Shows/hides the keypad.

Custom Tool Bar - Shows/hides the custom tool bar. You can create a custom tool palate by
creating buttons for tools, variables, programs or text.

Number keys - Inserts the number at the current cursor position in the entry field.

Decimal point - Inserts a decimal point at the current cursor position in the entry field.

Letter keys - Inserts the letter at the current cursor position in the entry field.

Integer Symbol - Inserts the integer symbol at the current cursor position in the entry field.

Negative sign - Insert a negative sign at the current cursor position in the entry field.

Exponent key - Insert the letter E to separate the exponent from the mantissa of a real number.

Enter Key - Adds the information in the entry field to the first position on the stack.

If the entry field is empty, clicking Enter will duplicate the object in the first position on the stack.

Help menu

Help Topics - Opens the Help dialog where you can access help through a table of contents, an
index or a full text search.

What's this? - Provides mouse access to context sensitive help for RPN Calculator elements.

About - Provides version information about RPN Calculator.

Angle Mode - Sets the mode in which angles are represented: RAD (radians), DEG (degrees),
GRAD (grads).

Coordinate Mode - Sets the mode in which complex numbers are represented: PLR (polar),
RCT (rectangular).

Integer Base Mode - Sets the base mode for integers: BIN (binary), OCT (octal), DEC
(decimal), HEX (hexadecimal).

Display Mode - Sets the real number display format: STD (standard), FIX (fixed notation), SCI
(scientific notation).

Stack - Displays all the objects currently on the stack including numbers, variables and
programs. If the list of objects on the stack exceed the stack display area, you can scroll up or
down or see more. You can also copy objects from the stack into the entry field to edit them.

Entry field - Lets you add objects to the stack and execute commands.

Choose Help | Help Topics from the menu or press the button on the tool bar to get more
help.

Choose Help | What’s This? from the menu or press the button on the tool bar to get help
on specific menu options or controls.

Status Bar - The status bar displays a short description of all the tools on the tool menu.

The status bar also displays error messages when RPN Calculator cannot carry out a function
you have entered.

Options Tab - Lets you set RPN Calculator options.

Error Beep check box - Enables/disables an error beep when RPN Calculator cannot carry out a
requested function.

Automatically Save… check box - Enables/disables automatic saving/quitting on exit. When
this option is checked you will not be prompted to save on exit. An open file will automatically
be saved. A new file will not be saved.

Stay On Top check box - Enables/disables staying on top when not active.

Load…Positions check box - Enables/disables the loading and saving of tool bar positions in the
registry. Starting and exiting RPN Calculator will be faster when this option is disabled.

Default Number of Fixed Digits field - Lets you change the default number of fixed digits for real
numbers. This affects fixed notation (FIX) and scientific notation (SCI) display modes when
they are selected from the Display Mode drop down control.

Custom Tool Bar Tab - Lets you create a custom tool bar. You can create buttons for variables,
programs and text strings.

Command field - Contains the name of a variable or program to add to the custom tool bar. The
resulting button will execute the program or recall the variable.

Text to Insert field - Contains the text to be inserted into the entry field. The resulting button will
insert the text into the entry field.

Add Command button - Adds the command in the Command field to the Selected Buttons list.

Add Separator button - Adds a space which separates buttons on the custom tool bar.

Insert Text button - Adds the text in the Text to Insert field to the Selected Buttons list.

Remove Button button - Removes the highlighted button from the Selected Buttons list.

Selected Buttons list - Lists all the buttons that will appear on the custom tool bar.

Move Up/Down buttons - Moves the highlighted button up or down in the Selected Buttons list.

Options - Opens the options dialog where you can create buttons for your custom tool bar. You
can also set various RPN Calculator preferences.

Execute Custom Command - Executes the command displayed in the button’s caption.

Insert Custom Text - Inserts the text displayed in the button’s caption at the current cursor
position in the entry field.

Extended Entry Field Button - Displays the extended entry field dialog.

Extended Entry Field Dialog - Allows more room for entering programs than the regular entry
field.

Insert global variable - Inserts the specified global variable.

Insert unit - Inserts the symbol for the specified unit.

- Inserts the symbol for an integer.

‘ ‘ - Inserts the symbol for a variable.

{ } - Inserts the symbol for a list.

[] - Inserts the symbol for a vector.

[[]] - Inserts the symbol for a matrix.

<< >> - Inserts the symbol for a program.

-> - Inserts the symbol for local variables.

(,) - Inserts the symbol for a complex number.

_ - Inserts the symbol for a unit.

do - Inserts symbol for do-until-end.

else - Inserts symbol for if[err]-then-else-end.

end - Inserts end keyword.

for - Inserts symbol for for-next/step.

if - Inserts symbol for if-then-[else]-end.

iferr - Inserts symbol for iferr-then-[else]-end.

next - Inserts symbol for for/start-next.

repeat - Inserts symbol for while-repeat-end.

start - Inserts symbol for start-next/step.

step - Inserts symbol for for/start-step.

then - Inserts symbol for if[err]-then-[else]-end.

until - Inserts symbol for do-until-end.

while - Inserts symbol for while-repeat-end.

Saving programs and variables

1. Enter a program for the function or the information you want to save.

2. Assign the program to a variable.

3. Click File, Save to save to the current RPN file or File, Save As to save to a new RPN file.

See also: Reviewing programs and variables
Copying programs and variables from one RPN file to another.

Reviewing and editing programs and variables

1. Select vars from the Tools menu to display a list of all the variables on the stack.

2. Enter the variable you want to review.

3. Select rcl from the Tools menu to recall the program or information assigned to the variable to
position 1 on the stack.

4. Select Edit from the Tools menu to move the information from position 1 on the stack to the
entry field where you can make changes.

5. Change the program.

6. Identify a variable to which the program will be assigned.

7. Select sto from the tools menu.

RPN Calculator
RPN Calculator is a reverse polish notation programmable calculator for science and
engineering. It supports over 180 functions and 9 data types (real, integer, variable, vector,
matrix, list, program, unit, and complex). The stack, variables, and programs can be saved and
reloaded. The number of levels of stack that can be used is virtually unlimited. If the number of
levels in the stack exceeds the display, you can scroll up or down to see more.

Disclaimer
Tom Boldt accepts no responsibility for damages resulting from the use of the RPN Calculator
and makes no warranty or representation, either express or implied, including but not limited to,
any implied warranty of merchantability or fitness for a particular purpose. RPN Calculator is
provided "as is," and you, its user, assume all risks when using it. Tom Boldt does not guarantee
correct mathematical results.

Copyright © 1992-1997 Tom Boldt

Installation
The files rpncalc.exe, rpncalc.cnt, rpncalc.hlp, and units.txt must be unzipped to the same
directory. Set up an icon or shortcut to rpncalc.exe. A command line argument of a saved
filename is optional (Note: to use this feature, the saved file must first be created with RPN
Calculator).

Registered users must put rpncreg.dll in their windows\system directory.

Registration
RPN Calculator is freely distributable as ShareWare. If you find this program useful, please send
$20 to:
Tom Boldt
2913 Castlebridge Drive
Mississauga, Ontario, Canada
L5M 5T2

Phone: (905) 814-9882

As an incentive to register RPN Calculator, some functions are disabled for unregistered users.

To report bugs or request additional features, email tpboldt@hookup.net.

The latest version of RPN Calculator can be found at http://www.hookup.net/~tpboldt.

Requirements
RPN Calculator runs in any of the following environments:

- Microsoft* Windows* 95.

- Microsoft* Windows NT* 4.0 (Intel* only).

* Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation. Intel is a registered trademark of Intel Corporation.

Legend
a real

#a integer

‘a’ variable

[a] vector

[[a]] matrix

{a} list

<<a>> program

a_u1 unit

(a) complex

obj1 objects of any type

See also: Reading stack diagrams

Reading stack diagrams

The following notation is used to signify specific object types:

a real

#a integer

‘a’ variable

[a] vector

[[a]] matrix

{a} list

<<a>> program

a_u1 unit

(a) complex

obj1 objects of any type

The objects initially on the stack are shown on the left side of the arrow (->). The objects
returned by the function are displayed on the right side of the arrow. For each side of the stack,
the right-most object is the object on Level 1. The left-most object must therefore be pushed
onto the stack first.

Example:
^ Power

a b -> c

This function takes two real numbers and returns one real number. To push 2 and 3 on the
stack, type 2<enter>3<enter>. The stack will now contain 2: 2, 1: 3. In this case a will be 2 and b
will be 3. Most functions require an <enter> to execute the function. Most of the one character
functions do not require an <enter>. In this case just type the power symbol (^).

Special Keys
The following key strokes perform a special action:

Ctrl+- Inserts negative sign (-), as opposed to performing the subtract command

Ctrl+. Inserts degree symbol (°)

Ctrl+A Inserts Angstrom symbol (Å)

Ctrl+U Inserts micron symbol (µ)

<Enter> Duplicates an object when the edit field is empty

<Delete> Drops an object when the edit field is empty

\ Swaps two objects when the edit field is empty

Functions Reference
When you open the Tools menu, the status bar provides a brief explanation of the currently
highlighted function.

To get more help for a specific function, highlight the function on the Tools menu and press F1.
The help topic for the selected function displays.

On Windows NT 3.51, the menu option must be chosen with the keyboard, not the mouse, in
order for F1 to work. To use the mouse, choose Help | What’s This? and then select a menu
option.

